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Abstract 

Placentation arose in mammalian evolution some 150-200 M 

years ago and integrates in a rather ingenious manner a large 

number of previously evolved multicellular regulatory 

pathways which include: angiogenesis, inflammatory 

cytokines and interleukins, HLA expression, immune peptides, 

immune regulatory receptors (for NK decidual cells, T and B 

cells, including Tregs, macrophages, antigen-presenting cells ), 

endothelial cells and fibroblasts, immune checkpoints 

(including PD-L1), many paracrine or endocrine hormones and 

growth factors, tissue enzymes, extracellular vesicles, several different mechanisms for epithelial-

mesenchymal transitions, several hypoxia adaptations, morphogenetic changes, and others. Speculating from 

real genomics and epigenetic data from a single clinical case of a pregnant young woman with breast cancer, 

it has been recently proposed that mammalian cancer cells do not have to invent “de novo” immune escape 

mechanisms, including so-called “immune editing”, but to redeploy–probably by epigenetic mechanisms–

intrinsic or encrypted gene programmes physiologically used by the process of invasive placentation in 

mammals. Most of these programmes were not evolved specifically for the placenta–but there were probably 

some exceptions, such as those still poorly understood key pathways related to foeto-maternal tolerance or 

perhaps trophoblast differentiation and decidual invasion. In my opinion, invasive placentation molecular 

switches can complement the hallmarks of cancer, by re-using “placental gene programming” to the 

competitive advantage of cancer cells. 
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Introduction 

‘Hallmarks of Cancer' was the title of a review 

published in ‘Cell’ by Dr. Douglas Hanahan 

and Dr. Robert Weinberg early in the year 

2000 [1] and which is so far one of the most 

important papers published in cancer 

biology. To find a common denominator of 

cancer they set up a conceptual framework for 

tumour development. It constitutes a 

collection of 'acquired capabilities and 

characteristics' of neoplastic malignancy. 

These “cancer hallmarks” have been gradually 

updated from the original six [1] to ten 

hallmarks in 2011 and fourteen in the latest 

addition in 2022 [2,3]. Following the 

experimental demonstration in one clinical 

case of a pregnant woman with breast cancer 

diagnosed towards the end of her pregnancy 

[4–10], it was suggested that re-using 

“placental gene programming” (to the 

competitive advantage of cancer cell clones) 

can help tumour cells to escape from immune 

vigilance during carcinogenesis, or cancer 

progression. Our analysis (published in 2016-

2020) was carried out in primary breast 

cancer with metastatic homolateral axillary 

lymph nodes as well as placenta tissue (both 

uterine decidual tissue and term placenta 

tissue) from a pregnant woman with twins 

who was diagnosed with lobular infiltrating 

breast cancer towards the end of her 

pregnancy and following caesarean section 

(prior to mastectomy and lymphadenectomy 

almost twenty years ago) required a 

hysterectomy due to excessive bleeding. 

Following surgery the patient received 

adjuvant chemotherapy with dose-dense 

chemotherapy and filgrastim (G-CSF) 

support. Both the mother and her two 

children are well and healthy at present. Gene 

expression profiling of paired non-self and 

self-tissues (i.e., placenta/uterus; breast 

cancer/normal breast tissue; metastatic 

lymph node/normal lymph node tissue) was 

performed using the Pan Cancer Immune 

gene panel, a 770 Nanostring (Seattle, USA) 

gene expression panel. Our findings revealed 

significant overlapping in specific immune 

gene expression in placenta and cancer tissue, 

suggesting that these genes might play an 

important role in maintaining immune 

tolerance both physiologically (in the 

placenta) and pathologically (in the cancer 

setting) [4–10]. The same tissues were 

analysed by epigenomic analysis of these 

tissue samples and described the main 

findings with respect to immune-related gene 

regulation (over- or under-expressed) in 

cancer cells as compared to placental tissues. 

The [5] significant similarities, and 

hierarchical clustering (both unsupervised 

and supervised) were confirmed in CpG 

island methylation patterns between 

decidual/placental and cancer 

microenvironments, which cannot be easily 

explained by simple models or unique 

pathways. Supervised CpG island methylation 

hierarchical clustering heat-maps showed a 

consistently differential methylation pattern 

that was closer between normal tissues 

(breast and normal lymph nodes) than 

between normal and malignant tissues, or 

placental decidual tissues. Several different 

cell types are probably involved in these 

complex immune regulation mechanisms. 

Cancers, it was concluded, may somehow 

"hijack" gene programmes evolved over 

millions of years to allow for foeto-maternal 

tolerance in placental mammals in order to 

escape from immune vigilance and spread 

locally or to distant sites. Once a cancer 
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micro-environment has acquired the genetic 

and epigenetic "placental immune editing 

switches" (PIES) phenotype-as we call these 

immune regulatory genes or epigenetic 

markers shared between malignant and 

placental tissues-it seems likely that this will 

keep them "available", whenever needed, for 

the rest of cancer development, as 

presumably they confer on cellular clones the 

competitive advantage of passing unnoticed 

by the host's immune system. This “cancer 

invisibility” should allow primary cancers and 

their metastases to continue growing in spite 

of dynamic antigenic landscapes. 

Dunn and colleagues [11–13] proposed in 2002-

2004 that most cancers underwent 

immunoediting, from immunosurveillance, 

through “equilibrium”, to tumour escape. The 

placental immune editing switches (PIES) 

hypothesis proposed a broad and 

evolutionary framework [4–10] for the 

molecular mechanisms of cancer immune 

editing by postulating that many of them 

could be related to ancient evolutionary 

mechanisms related to foeto-maternal 

immune tolerance mechanisms in placental 

mammals. Experimental and clinical evidence 

has been published on cancer immune 

editing [14]. It seems likely that during 

carcinogenesis and cancer progression there 

are T-cell-dependent and T-cell-independent 

mechanisms of cancer immunoediting. It was 

hypothesized that much of what people know 

about immunoediting in cancer cells will be 

relevant to why the placental allograft is 

tolerated by the mother. Conversely, some 

insights may gain into how cancers evade the 

host immune system from what was learnt 

from pregnancy. 

Cancers, while occupying a 

microenvironment teeming with immune 

cells, utilize a wide range of tactics that 

impede anti-tumour immunity and even 

divert immune cell activities to their own 

advantage [14,15]. For example, certain cancer 

cells are capable of secreting 

immunosuppressive factors targeted to 

various immune cell types, possibly, as in 

cancer, causing cytotoxic T-cells to become 

hyporesponsive. Other cancers reduce their 

expression of surface exposed MHC Class I 

and II and T-cell receptor co-stimulatory 

molecules. They may also process or present 

antigens poorly. These mechanisms, because 

of their breadth, are not extensively discussed 

here, although they also seem to represent 

strategies used by placental trophoblast. On 

the other hand, immunotherapies have 

transformed cancer treatments over the past 

decade, even if resistance mechanisms are 

still poorly understood [16–22]. James Allison 

and Tasuko Honjo shared the 2018 Nobel 

Prize for Physiology or Medicine for their 

pioneering contributions to these 

transforming cancer treatments. Although 

checkpoint inhibitors approved for clinical 

use have so far been confined to those that 

target PD-1 or its ligand PD-L1 and CTLA-4, 

others directed against additional checkpoint 

components are currently in clinical trials, 

and some have been reported in placental 

tissues, including trophoblasts [23–32]. HLA-

G, better known for its expression in 

extravillous trophoblast, is also associated 

with several forms of malignant cancer cells 

[23]. Unfortunately, there is only limited 

supporting evidence for immune checkpoints 

contributing to trophoblast defence in mice 

genetics [30]. 
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The mysterious origin of invasive 

placentation 

The emerging field of “Paleovirology” [33] has 

led to the discovery that syncytins are ‘new’ 

genes encoding proteins derived from the 

envelope protein of endogenous retroviral 

elements that have been independently 

captured (on repeated occasions) in different 

mammalian species by a process of 

“convergent evolution”. A “convergent 

evolution” was also postulated by Wagner’s 

group [34] to suggest that mammals with the 

most invasive types of placenta also have 

higher cancer risks. According to their 

original observations, this is mainly due to a 

higher degree of stromal “invasibility”, rather 

than tumour “invisibility” [34]. Knockout 

experiments on syncytin genes in mice (nicely 

reviewed in ref. 33) provide evidence that they 

are essential for placenta development and 

survival of the embryo by cell–cell fusion of 

syncytial cell layers at the foetal–maternal 

interface. 

The issue of choriocarcinomas 

Placental trophoblast behaviour (e.g., extra 

villous villi) is invasive, but not malignant. 

Lala et al. [35] have recently published an 

elegant review in ‘Placenta J.’, stressing the 

differences rather than the similarities 

between placenta and cancer. For example, 

placenta invasion is tightly controlled, 

whereas tumour invasion evades this control. 

The genomics of choriocarcinomas [36] 

indicate that their gene drivers are probably 

different from those of most human epithelial 

cancers. Normal trophoblasts somehow 

retain normal physiological mechanisms of 

cellular proliferation, and local or distant 

invasion control. Choriocarcinoma cells are 

genomically different from trophoblasts 

because, like all malignant tumours, they 

accumulate specific carcinogenic mutations, 

unlike invasive normal trophoblasts that do 

not, and they continue to respond to 

physiological signals that prevent them from 

truly invading not only the decidual tissues 

but also neighbouring local tissues, and from 

spreading by blood or lymphatic systems to 

distant sites. Recently, Jung et al. [36] have 

detected five driver mutations in gestational 

choriocarcinomas, GCs, most of which were 

chromatin remodelling gene (ARID1A, 

SMARCD1, and EP300) mutations, but not 

mutations in common cancer gene drivers 

such as TP53 and KRAS. Most GCs (25/29) 

harbouring recurrent copy number 

alterations (CNAs), and gains on 1q21.1-q44 

were significantly associated with poor 

prognoses. Interestingly, copy-neutral loss-

of-heterozygosity (CN-LOH) is an apparent 

early pivotal event in hydatidiform mole to 

gestational choriocarcinomas (HM-IM-GC) 

development, and CNAs may be a late event 

that promotes progression to GC. Their [36] 

data indicate that GCs have unique profiles of 

CN-LOHs, mutations and CNAs that together 

differentiate GCs from non-GCs. CN-LOH 

and CNA profiles will probably be useful for 

the molecular diagnosis of GC and for the 

selection of GC patients with poor prognoses 

for more intensive chemotherapy treatments, 

respectively. The fact that choriocarcinomas 

do not primarily depend on frequently 

mutating gene drivers (unlike most common 

human epithelial cancers) is intriguing. On 

balance, it seems reasonable to speculate that 

trophoblasts do not “hijack” invasive 

placentation epigenetic switches (whatever 

their nature might be) through mutated 

cancer gene drivers, but probably by 
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physiological and still unknown regulatory 

mechanisms-quite probably including 

specific transcription factor networks. 

Immune suppressive effects of mutated 

‘gene drivers’ 

A fairly comprehensive review has been 

recently published in ‘Oncogene’ on how 

oncogenes and other cancer gene drivers 

(including tumour suppressor genes) can 

elicit immune escape mechanisms, and how 

cytotoxic and targeted therapies (including 

PD-L1) partially reverse these effects [37]. 

Curiously, though, these authors from 

Nashville USA do not relate any of these 

interesting immune escape mechanisms-by 

viral and non-viral-related cancers-to that 

magic and often forgotten organ: the 

placenta. Even though, first, the placental 

organ might have evolved precisely from a 

retroviral infection (or probably several 

successive retroviral infections) starting some 

150 M years ago (the origin of mammals with 

invasive placenta); secondly, one of the 

functions of the placenta is precisely to 

defend the foetus from foreign pathogens, 

including viruses; and thirdly, another of the 

functions of the placenta is the "maternal-

foetal tolerance", that is, the immune escape 

of the foetus from the maternal immune 

system. 

Transcription Factors and Placentation 

It seems quite probable that the co-ordinated 

actions of transcription factors (TFs) regulate 

trophoblast cell types, including 

syncytiotrophoblast and extravillous 

trophoblast [38]. A recent review of the 

expression of repetitive elements (REs), 

endogenous retroviruses (ERVs) and 

transposable elements (TEs) in cells of the 

placenta and in cancer, related to changes in 

malignant phenotype and immune 

regulation, has been published by a research 

group in New Zealand [39]. A comparative 

study by Nordor et al. (2017) [40] identified 

that almost half of the hypomethylated DNA 

regions in placentation overlapped with 

hypomethylated DNA regions in several 

different cancer types, when comparing DNA 

methylation similarities between cancer cells 

and first trimester placenta. It has also been 

suspected for some time [41] that 

transposable elements (TE) drive widespread 

expression of oncogenes in human cancers; or 

that endogenous retrovirus function as 

species-specific enhancer elements in the 

placenta [42,43]. As recently pointed out by 

Illsley et al. [44], probably only the 

differentiation of cytotrophoblast (CTB) into 

the invasive extravillous trophoblast (EVT) 

has been clearly identified, suggesting a key 

role for the transcription factor ZEB2 (zinc 

finger E-box binding protein 2) in the relevant 

epithelial-mesenchymal transition (EMT). 

Perhaps surprisingly, a recent single-cell 

survey of the human first trimester placenta 

and decidua [45]–based on single-cell 

transcriptomics of specific cell markers–

suggests a possible role shift of EVTs from 

being mainly anti-inflammatory in the early 

stages of pregnancy. However, a number of 

papers point to a more complex and 

interactive dynamic networks of TFs: 

1. There is one interesting article that 

compares transcriptomes in cancer 

and preeclamptic placenta “Roxana 

Moslehi, James L. Mills, Caroline 

Signore, Anil Kumar, Xavier 

Ambroggio & Amiran Dzutsev, 
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Integrative transcriptome analysis 

reveals dysregulation of canonical 

cancer molecular pathways in 

placenta leading to preeclampsia, 

Scientific Reports , 30 aug, 2013, 2407 

| DOI: 10.1038/srep024071 

2. Regarding the roles of HLA-G 

expression by EVT and many Cancer 

cells, here is a good review: "Lin A, 

Yan WH. Human Leukocyte Antigen-

G (HLA-G) Expression in Cancers: 

Roles in Immune Evasion, Metastasis 

and Target for Therapy. Mol Med. 

2015 Nov;21(1):782-791. doi: 

10.2119/molmed.2015.00083. Epub 

2015 Aug 24. PMID: 26322846; 

PMCID: PMC4749493." 

3. Perhaps surprisingly, a recent single-

cell survey of the human first 

trimester placenta and decidua [45]- 

based on single-cell transcriptomics 

of specific cell markers-suggests a 

possible role shift of EVTs from being 

mainly anti-inflammatory in the early 

stages of pregnancy. The authors find 

that there are marked regional 

differences in differentiation 

pathways of CTB into STB and EVT 

between the smooth chorion (SC) 

and Villous chorion sampled from a a 

mid-gestational placenta. SC-CTBs 

forma a stratified epithelium and 

show distinct expression of 

cytokeratin isoforms like the 

epidermis, secrete migration-

inhibitory factors. EVTs in the SC are 

essentially non-migratory, remaining 

close to the CTBs. 

Other transcription factors are also worth 

following up in this context. For example, 

NALP7 is the first maternal effect gene-

identified in humans and is also 

responsible for recurrent spontaneous 

abortions, stillbirths, and intra-uterine 

growth retardation [46]. It is also part of a 

key TF (transcription factor) family with 

many functionalities, ranging from 

immune control to placental tumours 

(moles) [47–49]. NLRP7, for example, is 

involved in hydatidiform molar 

pregnancy, and interacts with the 

transcriptional repressor ZBTB16. 

Conclusions and future suggestions 

At present, the definitive immune 

regulatory mechanisms of foeto-maternal 

tolerance are not understood in mammals 

with invasive placentation, nor the 

immune regulatory mechanisms of 

immune vigilance or immune escape 

during carcinogenesis or cancer 

progression. “Eppur si muove”-Galileo 

might say. And yet, “they happen”. 

Whether or not the two key biological 

processes are mechanistically molecularly 

related remains to be proved 

experimentally (beyond our single clinical 

case with comprehensive genomic and 

epigenomic studies). But further 

experimental research, pre-clinical and 

clinical, on the hypothesis of 

redeployment of placental gene 

programmes, is warranted. Pre-clinical 

models are being contemplated at 

present, ranging from rodents (mice and 

rats, inducing cancers by 

chemical/hormonal sequencing and then 

made pregnant- or genetically suitably 

modified strains) to others. The review 

article is not conceptually flawed. On the 
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contrary, most reviewers agree it does 

introduce several new unpublished 

concepts that unfortunately require more 

in-depth experimental evidence. 

Unfortunately, to find substantial more 

clinical cases like the single one (pregnant 

woman with breast cancer)-with six 

relevant tissues of the same individual 

patient for direct comparisons, including 

uterus and placental decidual tissues-is 

very difficult. Equally difficult might 

prove to study experimentally breast 

carcinogenesis in Platypuses 

Ornitorhincus or Equidna (Australian 

ancestral mammals in risk of extinction 

and difficult to work with in the labs). 

Fascinating mammals-without placental 

tissues that in spite of breast ducts or 

lobules do not appear to get breast 

cancers. Controversy always existed on 

the utility of chemically induced mouse or 

rat mammary carcinogenesis models as 

valid equivalents for the study of human 

breast cancer. But in order to attempt to 

reproduce my results on the genomics 

and Epigenetic parallelism such 

preclinical rodents’ models might provide 

us with interesting data. For example, 

models of carcinogenic relevance 

(combined chemical carcinogenic 

substances with hormonal progesterone-

like stimulation to induce pregnancy), or 

others based on genetically modified mice 

strains, could provide us with a “gold 

mine of new data” linking mammalian 

invasive placentation to breast cancer, 

and possibly other cancers too. 

Comparative bio information analysis of 

Genomic and Epigenetic signatures in 

normal tissues, decidual and placental 

tissues and cancers in experimental 

pregnant animals, will offer a complex but 

fuller insight into carcinogenesis, cancer 

progression and cancer hallmarks, as well 

as on the mystery of the evolutionary 

development of frequent epithelial 

cancers.
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